A New Distance Criterion for Face Recognition Using Image Sets

نویسندگان

  • Tat-Jun Chin
  • David Suter
چکیده

A major face recognition paradigm involves recognizing a person from a set of images instead of from a single image. Often, the image sets are acquired from a video stream by a camera surveillance system, or a combination of images which can be non-contiguous and unordered. An effective algorithm that tackles this problem involves fitting low-dimensional linear subspaces across the image sets and using a linear subspace as an approximation for the particular face identity. Unavoidably, the individual frames in the image set will be corrupted by noise and there is a degree of uncertainty on how accurate the resultant subspace approximates the set. Furthermore, when we compare two linear subspaces, how much of the distance between them is due to inter-personal differences and how much is due to intrapersonal variations contributed by noise? Here, we propose a new distance criterion, developed based on a matrix perturbation theorem, for comparing two image sets that takes into account the uncertainty of estimating a linear subspace from noise affected image sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-manifold metric learning for face recognition based on image sets

In this paper, we propose a new multi-manifold metric learning (MMML) method for the task of face recognition based on image sets. Different from most existing metric learning algorithms that learn the distance metric for measuring single images, our method aims to learn distance metrics to measure the similarity between manifold pairs. In our method, each image set is modeled as a manifold and...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

Fuzzy Bidirectional Weighted Sum for Face Recognition

A new method for feature extraction and recognition, namely the fuzzy bidirectional weighted sum criterion (FBWSC) is proposed in this paper. FBWSC defines the row directional fuzzy image optimal image projection matrix. Subsequently, each sample in the original training sample set is transformed using the row directional optimal image projection matrix, and the row directional feature training...

متن کامل

New distance and similarity measures for hesitant fuzzy soft sets

The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...

متن کامل

A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients

In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006